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Absb-act. Israel’s method for treating surface layers in general relativity is applied to 
construct shell sources for exterior static axially symmetric gravitational fields. Considera- 
tion is restricted to cases in which the 3-cylinder representing the history of the shell is an 
equipotential surface of the exterior field and consequently the space-time inside this 
3-cylinder is flat. 

1. Introduction 

An important problem in general relativity is that of constructing physically realistic 
for known vacuum solutions of Einstein’s field equations. In the present work, 

themethod of Israel (1966) is used to construct shell sources for the Weyl class of static 
aKidly symmetric fields (see Synge 1964, p 312). More precisely, space-times are 
exhibited for which the metria inside and outside a certain 3-cylinder (the history of a 
dosed shell) are of the Weyl class and satisfy the appropriate junction conditions across 
the 3-cylinder; furthermore the resulting energy tensor of the shell is physically 
realistic. 
In their study of similar problems, Morgan and Morgan (1970) renounce Israel’s 

method in favour of a more direct use of the field equations which is made possible by 
thehigh degree of symmetry involved. In doing so they claim that ‘it is possible to gain a 
Pater insight into the problem’. While acknowledging that their method does illumi- 
Gate many aspects of the problem, it is the hope of the present author to show that 
hePS method provides equally valuable insights which complement those of Morgan 
ad Morgan. 

It may validly be argued, of course, that shell sources are not very realistic, 
mQlarlY if one is interested in astrophysical applications. However, it is not 
?.eaonable to think that their properties should provide at least some qualitative 
*Qfions as to how a more realistic source might behave. 

In 5 2 an Outline of Israel’s method is given and this is applied to the case of axially 
SYmpletricfields in 0 3. By restricting our attention to cases in which the shell lies on an 
$%tential surface of the exterior field, in a Sense to be defined, it is found that the 

is considerably simplified. In $5 4 and 5,  having chosen a particular exterior 
Q1uhon of weyl’s equations in terms of prolate spheroidal coordinates, the various 
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possible ‘equipotential’ shell sources for this field are examined. Finally in $6 
Cmzon metric and the monopole solution of Zipoy (1966) in oblate spherbidd 
coordinates are briefly examined. 

2. Thinshells 

Let the 3-cylinder Z be the history of a closed thin shell in space-time, v- and v+ fie 
vacuum space-times inside and outside the shell respectively. Let 

{xi}, { x 9  (i = 0,1 ,2 ,3)  

be coordinates in V+ (respectively V-) in a neighbourhood of Z and let r” ( p  = 0,1,2) 
be intrinsic coordinates on 8. The equation of C regarded as embedded in V C ~ l  hof 
the form x i  = x i  (6”) and its equation in V- will be x i  = x i  (8’). The metric of v’k 
ds: = g;(x+) dx: dx l  and that of V- is ds! = g&-) d x i  dxc. 

The first fundamental forms (or intrinsic metria) on 8, induced by its embedding in 
V+ and V- respectively, are 

and 

where g;’and g i  are evaluated on Z. The second fundamental forms (or extrinsic 
curvatures) of I: in V’, V- respectively are given by 

where n: (respectively n;) are the covariant components of the unit vector nomaltox 
in Vf (respectively V- and pointing out from (respectively into) C. 

Since C is the history of a shell we have, following Israel (1966), 
(ds:)r = (d& * (2.3) 

Furthermore, defining yWu by 

Ypu = K;, - KZY (2.4) 

the surface energy tensor S,, of the shell is given by the ‘Lanczos equations’, 
(2.5) 

to the 
- 4. = Y,” - g,uy, 

g!, being the intrinsic metric tensor on 8, y = 7; and K = 8 ~ .  The relationofS+p 
(singular) energy tensor of the matter constituting the shell is clarified in the appendix* 

3. N d y  symmetric fields 

Consider the case in which V’ and V- are static, vacuum, axially symmetric 
times. By choosing Weyl’s quasi-cylindrical coordinates (r, I?, 9, t )  in 

and (f, i, $9 f l  
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&e line elements may be written in the form (see Synge 1964, p 312) io v-7 
ds: = ez(v-A) (dr2+dz2)+r2 e-2Ad+2-e2A dt2 
ds--e 2 - 2(C- i )  (df2+dZ2)+f2 e-22 d$2-e2idf2 

mpe&ely, where A = A(r, z) ,  Y = v(r, z), 

a2A a2A 1 ah 7 + 7 + - - = 0  
ar az ar ’ 

withidentical equations for h(f, f) and 5(T, 2) .  

mtrics of B in V’ and V- are then 
h t z  =f(r) be the equation of C in V’ and 2 = T(T) its equation in V-. The intrinsic 

(l+f”) dr2+r2e-2A d+2-e2A dt2 (3.5) (ds2) - e2(Y-”) + L- 

and 
(ds!), = e2(”-2)( 1 + 7’) di2 + p2 e-2i dJ2-ezX d f 2 ,  (3.6) 

respectively, where a prime denotes derivative with respect to r (respectively 7). By 
(2.3),these two expressions must agree, i.e. there must be a transformation from (r, 9, t )  
to (T, under which (3.5) transforms to (3.6). Since the metric components are 
independent of 4, t and 6, i and there are no cross terms, it is clear that by a trivial 
adjustment we can make $ = C#J and i = t. Hence, comparing (3.5) and (3.6) we obtain, 
on 2, 

i= r, h = h ,  e2‘(1 +T2) = e’”(1 + f 2 ) .  (3.7) 
Given A and U in V’ and the equation z =f(r) of C in Vc we can, in principle, 
determine X and i7 in V- and the equation 2 = T(r )  of Z in V- by using the simultaneous 
Wtem of equations (3.3), (3.4) (for ,i, F) and the second and third equations of (3.7). 
Ifowever, in practice, it is difficult to disentangle this system of equations for the 
general case. 

Things become somewhat simpler if we take the shell to be an ‘equipotential’ surface 
Ofthe external field in the sense that 

(A), = A. (constant). (3.8) 

B Y  the second of (3.7) we then have (& = A. and hence, since 1 is a harmonic function, 
‘ = b i n  V-(see Courant and Hilbert 1962, p 255). Byequation (3.4) (for h; F)F is also 

in v- and, since elementary flatness requires that 5=0  on the axis of 
(synge 1964, p 314), it follows that 5 = 0 everywhere in V-. The interior 

I 

metric is therefore 

ds2=e-2*0(df2++~2+~2d~2)-e2Aodt2  (3.9) 

which is Minkowskian. Equation (3.7) then becomes 

(1  +?‘) = e2”(1 +y2), on Z, (3.10) 

‘3 since V and f are given, we can determine the equation Z = f(r) of 2 in V-. By 
the equations (2.2) it is now a straightforward matter to calculate the second 
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fundamental forms KtY and 
then yield the energy tensor S,, of the shell. 

(3.11) e2”(1 +fr2) - 1 2 0, on E. 
Hence, if the inequality (3.1 I) does not hold, E cannot be embedded in a flat interior 
v-. We shall see that the effect of this is to impose an upper limit on the ratio of he 
mass to a typical radius of the shell. 

In what follows, we shall refer to a shell lying on a hypersurface Z which satisfies 
property (3.8) as an ‘equipotential shell source’. 

where (tl, t2, t3) = (r, 6, th Equations (2.4) a d  (2.5) 

An interesting feature of (3.10) is that it admits a solution for f o d Y  if 

4. Prolate spheroidal shells 

In this section the method of § 3 is applied to a partialar solution of Weyl’s equationsin 
V+. The interest of the solution which we consider, as distinct, for instance, from 
mentioned in § 6, lies in the wider range of possible equipotential shell sources whichit 
allows. 

We firstly transform from Weyl’s quasi-cylindrical coordinates (r, z, 4, r) to quasi- 
prolate spheroidal coordinates (x ,  y, 4, t )  defined by 

r = a(x2- 1)’/~(1 -y2)’/’, z = axy, +=+, t=t,  (4.1) 

where a is a constant and the ranges of the coordinates x, y are 1 S x < CO, - 1 C ys 1. 
The surfaces x = constant are prolate spheroids with major axes along the z axis while 
the surfaces y = constant are two-sheeted hyperboloids of revolution with the z axis as 
axis of symmetry. 

The Laplace equation (3.3) for A is then 

while the equations for Y are 

1 - y 2  2 ah 2 ah ah 

ah 2 ah ah 2-1 2 

ax ( 7 7 ) [ x ( x 2 - a ( g )  x -y  -x(l-y2)(-) ay  -2y(x2-1)---] ax ay 

e= ay (n)[ x -Y Y(X2- 1)(g) -y(l-y2)(-) ay +2x(l-y2)aX -&-I. (4.3) 

The solutions of (4.2) which are regular on the semi-infinite line-segments Y = * and 
well-behaved at infinity are of the form 

(44 
A = I A Q ~ ~ ) N Y )  

I 

where N y ) ,  1 = 0, 1, . . . , are the Legendre poiynomials and Q h )  the *gendre 
functions of the second kind. 

Let us take the solution of (4.2) with I = 0, i.e. 

(4.51 
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&rep is a positive constant (the factor 4 is there for later convenience). Substituting 
@in (4.3) and solving, we obtain 

x2- 1 
v = fp2 log 2 

x -y2  (4.6) 

&re the constant of integration has been chosen so that Y = 0 on the axis of symmetry 
pk1) .  The metric (3.1) in V+ is therefore 

(4.7) 

kt the history of the shell, 2, be the ‘prolate spheroidal’ 3-cylinder x = x o  
(anstant) > 1. Then the intrinsic metric of C due to its embedding in V+ is 

-(-) xo-1 5 dt2, 
xo+ 1 (4.8) 

where y, 3 and t are taken as intrinsic coordinates on 2. Since 2 is an equipotential 
surface, in the sense already defined, the line element in V- is that of (3.9) which in the 
present case becomes 

ds?= (-) x o s 1  5 (dF2+df2+F2dq5Z)-(-) xo-1 5 dt2. 
x g -  1 xo+ 1 (4.9) 

In terms of the intrinsic coordinates ( y, 4, t )  on Z, the equation of the latter in V- will be 
of the form 

i = f ( y ) ,  2 = dY), (4.10) 

wheref(y) and g(y) are to be determined by the junction conditions (2.3). The intrinsic 
metric of Z induced by its embedding in V -  is then 

d 2 ( Y  1 = a2(x;- 2 1) [ ( T ? ) 5 2 - 1 - Y 2 ] .  x i - -  1 
1 - Y  xo-Y 

(4.1 1) 

(4.12) 

(4.13) 

. In the subsequent work we shall not need an explicit expression for d y ) ,  SO W e  Can 
sldesteP the daunting task of integrating (4.13). However, in order that a real function 
g(y) should exist; it is clear that we must have 

.’(xi- 1) [ (n)5*-’ xi-1 
- y 2 1  3 0. 

1-y2 xo-y 
(4.14) 



702 J D McCrea 

TO exmine the conditions under which the inequality (4.14) holds, we distinguishthe 
three possibilities, (a) P = 1, ( b )  P > 1 and (C) p < 1. 

In case (a)  (p = l), Erez and Rosen (1959) have pointed out that the metric in v t  is 
that of Schwarzschild. To see this put p = 1 in (4.7), let (I = m and make the &ansforma- 
tion x = (r /m) - 1, y = cos 0 to get 

ds:= (l-?)-1dr2+r2(d82+sin2 8d+’)-(1-3)dt2.  
r 

By (4.12) and (4.13) (with fi  = 11, the equation of C in V -  becomes 

z = m(x& 1)”2y (4.15) 
p =  1)’/2(1 -y2)1/2 

where we take Z = 0 at y = 0. In other words C is the sphere 

Y 2 + Z 2 =  m2(x i -  1). (4.16) 

If we make the transformation R = [ (xo+ l)/(xo- 1)]1’2T, 2 = [ (xo+ l)/(x0- 1)]1/2z, 
T=[(x~- l ) / (xo+l ) ]~ /~ t  in (4.9) (with p = l), we obtain, in V-, the more fda f t a t  
space-time metric 

dS?=dR2+dZ2+ R 2  d+’-dT2 (4.17) 

and the equation (4.15) for C. in V- becomes 

R 2 + Z 2 =  m ’ ( ~ ~ + l ) ~ .  (4.18) 

Thus the radius Do of the sphere Z in the interior Euclidean space is 

Do = m(x0-t 1) (4.19) 

and as XO+ 1, Do-, 2m, the Schwarzschild radius. We shall see subsequently that the 
stresses in the shell become infinite in this limit. 

In case ( b )  (P  > l),  the inequality (4.14) holds, for all y in - 1 s y C 1, onlyifxoap. 
It will appear later that the mass of the shell is M = pa, so that this inequality be” 
(M/axo) 1. Thus the restriction on the possibility of embedding Z in V -  expressedby 
(4.14) puts an upper bound on the ratio of the mass to a typical radius of the shell. 

In case ( c )  (P  < l ) ,  the inequality (4.14) holds for all y in - 1 C y C 1 and for 
xoa 1. Thus we can have a complete sequence of equipotential shell sources, X=.xoy 

with 1 XO< W. Examination of (4.11)-(4.13) then shows that, as xo approachesun1~7 
the proper radius of the shell in the r direction goes to zero whereas it becomesinfinitely 
long in the z direction. Furthermore, the proper area of the shell rends to zero. 
the limit, as xo approaches unity, the shell becomes a thin rod of infinite length. . 

SO far, we have examined the possible equipotential shell sources, for the extenor 
metric (4.7), which are allowed geometrically. Our next task is to inquire into *e 
restrictions, if any, imposed by the requirement that the energy tensor Of the 
should be physically realistic. 

5. The surface energy tensor of the shell 

A straightforward calculation, using equations (2.2)-(2.4) with intrinsic COordinata ene@ 
(to, t2, t3) = (t, Y, 9 )  on 2, yields the following mixed components of the surface 
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and 

Adapting Whittaker’s (1935) theorem to the case of a surface layer (see appendix), 
we may immediately calculate the total mass A4 of the shell by the integral, 

( - S g + S , ’ + S : ) P d y d 4 ,  (5.6) 

here g(3) is the determinant of the intrinsic metric on 2. This yields 

M = p a  (5.7) 

which is identical with the result obtained by Bonnor and Sackfield (1968) for a disc. 
In order that (5.1)-(5.3) should represent the components of a physically realistic 

energy tensor for the cases (a),  (b) and ( c )  of 0 4 we require that, for the full ranges of 
the parameters xo and p and of the variable y in each of these cases, 

(i) $SO (the weak energy condition, see Hawking and Ellis 1973, pp 89-95), 
(ii) -Sg+S,’+S:a 0 (the strong energy condition, again see Hawking and Ellis 

(G) for a weak field, i.e. ( p / x o )  << 1, (/S&’lS:l) and (IS:l/lSo”l) should be of order 

It may be verified that these c-onditions are, in fact, satisfied. Furthermore, S; and S3 
are always positive so that they represent pressures.? 

It kof interest to examine, in each of the above cases, what happens to the energy 
‘mr athe limiting surface forthat case is approached. In case (a) (p  = 1) where, as xo 

to U n i t y ,  the radius of the sphere C approaches the Schwarzschild radius, the 
Pressures become infinite and the density, -S:,  tends to (1/8wm). In case (b)  (p > 11, 
as *O approaches p, the density and pressures remain finite, so nothing catastrophic 
Oaws. For values of x0 less than p one gets imaginary values for the energy tensor 

In case (c) (p < 1) where, as xo tends to unity, the prolate spheroid 
an infinitely long thin rod lying along the z axis, both the density and the 

reference), 

3 I B l X O ) .  

pressWS tend to infmity. 

*r Of si, the author must admit to having had recourse to a computer. 
(ii), (iii) and the positive character of Si are easily verified. For condition (i) and the positive 
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6. Some other 50delS 

m e  method described in 0 3 is clearly applicable to a wide variety of vacuum 
axisymmetric metria of V +  of which only one has been considered. Some results for 
two further cases are sketched in the present section. 

(6.1) z = a sinhu sin 8, 

a being a constant, we obtain quasi-oblate spheroidal coordinates. The metric (3.1) 
then becomes 

If, instead of (4.1), we make the transformation, 

r = a coshu cos 8, 9 = 9, t = f, 

& + = a  2 2 e Z(u-A\) (sinh2u +sinZ 8)(du2+d8z)+az e-’* cosh% cosz8 d4’-ezA dt2. (6.2) 

The simplest solution to the Laplace equation for A, in terms of these coordinates, is 
monopole solution 

(6.3) A = -0 tan-’(cosechu), 

where p is a constant, which has been considered by Zipoy (1966) and by Bonnor and 
Sackfield (1968). Corresponding to this A we have 

v = ;pz log (sinh’u +sin2@) 
cosh% (6.41 

1 The ranges of the coordinates U, 6 are 0 s U < CO, -TW 6 8 sir. 
Let us take as source of the field the oblate spheroidal shell Z given by U = 4, ha 

positive constant. Since A is constant on U = uo the interior metric is flat as in 8 4 and 
for the rest, one proceeds exactly as in that section. Corresponding to (4.141, the 
condition for Z to be embeddable in the interior flat space-time is 

(sir& uo +sinz e)@*+’) 
(coshuo)zBZ -coshz u0 sinz 8 3 0, (6.5) 

for all 8, - f.rr S 8 S &r. This is satisfied if and only if 
sinhuo 5 p. (6.61 

In other words, the situation here is qualitatively similar to case (b )  of P 4. Case (C) Of 
0 4, which allows a continuous sequence of equipotential shell sources over the full 
range of the parameter xo( 1 s xo < a), has no analogy in oblate spheroidal cmhates. 
Thus, the disc source of Bonnor and Sackfield is not a limiting case of the above by 
(6.61, ua is bounded away from zero. The mass of the shell, calculated by the integral 
(5.6) is, as before, 

M =  pa. (6.7) 
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dere a is a positive constant, h is again constant on X and hence the interior metric is 
Bat as before. The condition for embeddability of C in the flat interior space-time is 

(6.10) 

for 
r, 0 c r C a. This is so if and only if, 

mGa.  (6.11) 

nemas of the shell, as calculated by (5.6), is m, so once again there is an upper limit to 
be(mass/typial radius) ratio of the shell, expressed by (6.11). Details for the Curton 

may be found in Hogan (1974). 

4 3, a general method has been given for constructing equipotential shell sources for 
given exterior static axially symmetric gravitational fields. This method has been 
applied to some particular exterior fields of interest and, for each of the fields treated, 
wehave found a one-parameter sequence of equipotential sources. In cases ( a )  and (b )  
of $4 and in both cases mentioned in § 6 there is, for a given mass, a lower limit to the 
radiusof the source in any direction. In each of these cases, as the value of the relevant 
parameter decreases, the radius of the shell in all directions decreases. Case ( c )  of § 4 
exbibits an exceptional type of behaviour, as shown, but, in this case, while the radius in 
the r direction goes to zero as the parameter xo tends to unity, the radius in the z 
direction goes to infinity. This behaviour may be indicative of a general result for more 
realistic sources where there is a volume distribution of matter. 
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t6esheU and how equation (2.5) comes about we may proceed as follows. 
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where a bar over a quantity indicates that it pertains to the subspaces X' =anstant, 
r f  = rl,"= g""E,, and the double stroke in (AS) denotes a covariant derivative 
respect to 

n e  material energy tensor of the shell (see Misner et al 1973, Papapetrou and 
Hamoui 1968) will be of the form 

T j j =  t,.(X'), (A.7) 
where S denotes the Dirac delta function. The surface energy tensor, S,, on '2 is defined 

S j j= l imj  €+O -E Tjjdxl. (A.8) 

by 
+€ 

Einstein's field equations, 

G.. = - KT.. 
11 11' 

together with (A.8) then yield 
+E 

- KS, = lim Gij dx 
s-+o -E 

(A.9) 

By (2.3) and (A.2), g," is continuous at Z and hence and GPu are continuous at 2. 
Furthermore, the second of (A. 1) implies that I?,,, contains no delta functions at 2. 
Thus, (A.9) together with (A.3)-(A.6) yield 

(A.10) 

(A.11) 

U (A.12) 

where yMy is as in (2.4) and g,, = gpv(x' = O), i.e. in (A.12) g,, has the meaning attached 
to it in 0 2. 

The surface energy tensor defined by (A.8) has therefore no c c q " n t s  normal to 
and is essentially a tensor field on 2 with components S,, given by (A.12). In s 2  

From the above it is clear that one may adapt Whittaker's (1935) theorem to Obfa 

-KS,u = Y," - g,vym 

have called this tensor field 'the surface energy tensor of the shell'. 

equation (5.6) for the total mass of the shell. 
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